# Math Manipulatives: a micro:bit method 

Mike Deutsch
Kids Code Jeunesse
Montreal, QC, Canada

## KCJ's mission



KCJ is a bilingual Canadian charity determined to give every Canadian child access to digital skills education, with a focus on girls and underserved communities.

We encourage inclusive and sustainable learning by teaching kids and the educators that play a crucial role in their development. We're making sure our kids have the confidence and creative tools they need to build a better future.

## About me

## Mike Deutsch

Tiohtià:ke (Montréal)
Kanien'kehá:ka land
Director of Learning Services, KCJ
lst career: CS, $20 y$ in industry, near education
2nd career in education, KCJ and an MA (math/CS) at McGill U
"Sensemaking" approach to CS

> v @kidscoding
@mdeutschMTL

## Math manipulatives: micro:bit method

## Who are you?

- You do CS integration, or support subject area Ts with coding.
- You have micro:bits you can use, or are curious about them.

And maybe...

- "Manipulative" = pedagogical


## Math manipulatives: micro:bit method

In this session I will...

- Ground us with math+cs pedagogy
- Explore 4 flexible starter projects to think with in grades ~3-6 keywords: number sense, operations, patterning, algebra


## I hope you will...

- Build along with me
- Make sense of things, and maybe flop around a bit.
- Add your knowledge to the space


## Math manipulatives: micro:bit method



All we need:<br>Memory + processor A + B buttons LED "screen"

# Pedagogy: "Manipulatives" in Math + Cs 

## Manipulatives in math + CS

## Pedagogical themes in this session:

Productive integration of CS + Subject; how adding concepts \& practices from CS can unlock concepts \& practices in the other subject.

Manipulatives; how they help learners make sense of things. Helps them move from Concrete $\rightarrow$ Representational $\rightarrow$ Abstract.

## Manipulatives in math

## Manipulatives from K-4

Counting objects Abaci
Cuisenaire rods
Base 10 cubes - rods - flats Tangrams

pearsoncanadaschool.com

## Manipulatives in math

## Elementary math progression:

Counting
$\rightarrow$ Counting on
$\rightarrow$ Addition
$\rightarrow$ Skip counting
$\rightarrow$ Repeated addition
$\rightarrow$ Doubling
$\rightarrow$ Models of multiplication $\rightarrow$ Factors and multiples
$\rightarrow$ Standard algorithms

Concrete $\rightarrow$ Representational $\rightarrow$ Abstract

## NCTM:

Number and Operations
Number \& Operations in Base 10
Common Core:
Operations \& Algebraic thinking

```
familiar?
```


## Manipulatives in math

Graham Fletcher: The progression videos https://gfletchy.com/progression-videos/


The Progression of Multiplication
Search results for "progression of multiplication" A Autoplay next video

Concrete $\rightarrow$ Representational $\rightarrow$ Abstract

## Manipulatives in CS

Manipulatives in $\underline{C T / C S}$

Unplugged "instruction" games, Turtles, Beebots, Sphero

Unplugged misc: variables, data, algorithms, etc.

code.org team, CSTA 2021

## Manipulatives in math and CS

## In this spirit... let's make some manipulatives

4 flexible projects, growing slowly in complexity, For teachers and students to build and then use in math class.

Math and CS are co-equal. CS is never put first, and it can't distract too much.

Not "what clever things this tool can do."
Rather: "the clever thinking I can do, equipped with this tool I made."
By adding CS we augment or modify the math we can access.
We can create CS-based manipulatives for exactly the math we want to do.

## Manipulatives in math

## Elementary math progression:



Counting
Counting on Addition

Skip counting
Repeated addition
Doubling
Models of multiplication Factors and multiples Standard algorithms

## Building manipulatives

## Manipulatives in math

## Elementary math progression:


$\triangleright$ Counting
$\square$ Counting on
$\triangleright$ Addition
Skip counting
Repeated addition
Doubling
Models of multiplication Factors and multiples Standard algorithms

## 1. Simple click counter

© $\rightarrow$ makecode.microbit.org

Prompts \& tasks
"Can we build a micro:bit that counts?"

Keep score
Count off steps (measurement)

Act out simple addition problems

## Algorithm

- Start with zero
- When clicked, add 1
- Show the value


## Manipulatives in math

## Elementary math progression:



## Counting

$\rightarrow$ Counting on
$\triangleright$ Addition
$\triangleright$ Skip counting
$\triangleright$ Repeated addition
Doubling
Models of multiplication Factors and multiples Standard algorithms

## 2. Skip counter

## Prompts \& tasks

"Can we make this a skip counter?"

Practice addition (skip counting)
Can you get to 24 with just 2 s? How many does it take? (repeated addition)

What are the different ways to get to 12 ?
"Reach 21" game

## Algorithm

- Start with zero
- When $\underline{A}$ clicked, add [\#] and show the value
- When B clicked, add [\#'] and show the value

Let's try my pre-built skip counter.
What's another good target number? Why? What would be a skip counter that could reach that number in at: least two ways?

## Manipulatives in math

## Elementary math progression:



## Counting

$\rightarrow$ Counting on
Addition
Skip counting
Repeated addition
$\triangleright$ Doubling
Models of multiplication Factors and multiples Standard algorithms

## 3. Add and double

## Prompts \& tasks

"Can we make this an adder and a doubler?"

## Practice doubling

Can you get to 25 just by adding 1 and doubling?

What are the different ways we can get to 25 ?

## Algorithm

- Start with zero
- When A clicked, add l and show the value
- When $\underline{B}$ clicked, double and show the value

Let's build. Follow my algorithm.

What's a good target number? Why? Make an add-and-doubler, and reach the target number in two ways.

## 3. Add and double

## A 4th grade transcript...

Q: How can you get to 12 ?
A: count up to 6, then double it.
Q: Great. Can you give me another way?
A: ok, count to 3 and quadruple it.
Q : What do you mean, quadruple?
A: Um, ok, get to 3. Then double two times.
Q: Another way?
A: Ok, count up to 4. Double it. (That's 8.) Double it again -- oh, wait. You can't!
Q: riiight...
A: Ok, just count the rest of the way. 4 more to 12 .
Q: Up to ll?
A: Count to 4. Double it (to 8). Count the rest of the way.

## 4. Function machine

## Elementary math progression:

click counter
skip counter
add + double

## Counting

Counting on
Addition
Skip counting
Repeated addition
Doubling
Models of multiplication Factors and multiples Standard algorithms

## 4. Function machine

## Prompts \& tasks

Build a function machine with a mystery function. "What's my rule?" See if your neighbour can figure it out.

Extend with more sophisticated math operators.


## Algorithm

- Start with zero as the "input"
- A clicked: +1 to input, then show
- B clicked: calculate output, then show

Let's try my pre-built function machine. What's my rule?

What (integer) operations could you put in a mystery function for your students? Make a function machine we can solve.

## Others...

## We like these too:

- "Flash card" type
- Plotting $x / y$
- Randomness
- Rock-paper-scissors


## but we've retired

 (or no longer use in this way):

## Recap \& discussion

## I said we'd look at:

click counter
skip counter
add + double
function machine

4 flexible projects, building slowly in complexity, For teachers and students to build and then use in math class.

Math and CS are co-equal.
CS is never put first, and it can't distract too much.
Not "what clever things this tool can do." Rather: "the clever thinking I can do, equipped with this tool I made."

By adding CS we Augment or Modify the math we can access. We can create manipulatives for exactly the math we want to do.

## Recap

## Special thanks to:

## Sophie Lawi, Kids Code Jeunesse instructor

who has honed these activities extensively with Ss and PSTs.
Jared O'Leary @Jared_OLeary
whose csk8 podcast (Feb 2022) provided extra theoretical framework. http://jaredoleary.com/csk8

## Recap

## Discussion...

Do these DIY tools connect to anything you do?

What correction, addition, or subtlety would improve these? (pick any)

You came in to learn... What are you ready to create?

## Connect with us!

@ @kidscoding
© f kidscodejeunesse

* kidscodejeunesse.org
\#kids2030



# Math Manipulatives: a micro:bit method 

Mike Deutsch
Kids Code Jeunesse
Montreal, QC, Canada

## Sensemaking: Ideas \& intent

## We have found:

Start with level playing field.
We all get access to other people's thinking.

We fill in gaps, round out, formalize our own understanding.

Gain additional strategies for
 building.

## Sensemaking: Ideas \& intent

## Sense-making:*

- Conceptual understanding
- Multiple, flexible strategies
"Does this make sense?"
* Theory: social constructivism.


## Answer-getting:

- Procedural competence
- Narrow, inflexible strategies
"Did I do it right?"

